A generalized Hölder inequality and a generalized Szegő theorem
نویسندگان
چکیده
منابع مشابه
A Generalized Holder Inequality and a Generalized Szego Theorem
We prove a limit theorem connected to graphs, which when the graph is a cycle reduces to Szego's theorem for the trace of a product of Toeplitz matrices. The main tool used is a Holder type inequality for multiple integrals of functions which are applied to variables satisfying linear dependency relations.
متن کاملGeneralized averaged Szegő quadrature rules
Szegő quadrature rules are commonly applied to integrate periodic functions on the unit circle in the complex plane. However, often it is difficult to determine the quadrature error. Recently, Spalević introduced generalized averaged Gauss quadrature rules for estimating the quadrature error obtained when applying Gauss quadrature over an interval on the real axis. We describe analogous quadrat...
متن کاملA Generalized Singular Value Inequality for Heinz Means
In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$
متن کاملHölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1989
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1989-0984781-x